精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(1)证明:数列{
an-12n
}
为等差数列;
(2)求数列{an}的前n项和Sn
分析:(1)设bn=
an-1
2n
b1=
5-1
2
=2
bn+1-bn=
an+1-1
2n+1
-
an-1
2n
=
1
2n+1
[(an+1-2an)+1]
=
1
2n+1
[(2n+1-1)+1]
=1,所以数列{
an-1
2n
}
为首项是2、公差是1的等差数列.
(2)由题设知,
an-1
2n
=
a1-1
2
+(n-1)×1
,所以an=(n+1)•2n+1.所以Sn=2•21+3•22+…+n•2n-1+(n+1)•2n+n.由错位相减法能够求出数列{an}的前n项和Sn
解答:解:(1)∵数列{
an-1
2n
}
为等差数列
bn=
an-1
2n
b1=
5-1
2
=2
bn+1-bn=
an+1-1
2n+1
-
an-1
2n

=
1
2n+1
[(an+1-2an)+1]
=
1
2n+1
[(2n+1-1)+1]
=1,(6分)
可知,数列{
an-1
2n
}
为首项是2、公差是1的等差数列.(7分)
(2)由(1)知,
an-1
2n
=
a1-1
2
+(n-1)×1

∴an=(n+1)•2n+1.(8分)
∴Sn=(2•21+1)+(3•22+1)+…+(n•2n-1+1)+[(n+1)•2n+1].
即Sn=2•21+3•22+…+n•2n-1+(n+1)•2n+n.
令Tn=2•21+3•22+…+n•2n-1+(n+1)•2n,①
则2Tn=2•22+3•23+…+n•2n+(n+1)•2n+1.②(12分)
②-①,得Tn=-2•21-(22+23++2n)+(n+1)•2n+1=n•2n+1
∴Sn=n•2n+1+n=n•(2n+1+1).(15分)
点评:本题考查数列的性质和应用,解题时要注意通项公式的求法和错位相减求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案