精英家教网 > 高中数学 > 题目详情

由y=3x2+1,x=1,x=3及x轴围成的图形的面积为________.

28
分析:先确定积分上限为3,积分下限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.
解答:函数y=3x2+1与x=1、x=3及x轴围成的图形的面积是S=
=(x3+x)|13=(23+3)-(13+1)=30-2=28
∴函数y=3x2与x=1、x=2及x轴围成的图形的面积是28
故答案为28
点评:用定积分求面积时,要注意明确被积函数和积分区间,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是
③⑤
③⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是
③⑤
③⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

由y=3x2+1,x=1,x=3及x轴围成的图形的面积为
28
28

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)-f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案