精英家教网 > 高中数学 > 题目详情
设全集为U=R,集合A=(-∞,-3]∪[6,+∞),B=|x|log2(x+2)<4}.
(1)求如图阴影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求实数a的取值范围.
考点:集合的包含关系判断及应用,Venn图表达集合的关系及运算
专题:计算题,集合
分析:(1)先确定阴影部分对应的集合为(∁UB)∩A,然后利用集合关系确定集合元素即可.
(2)利用C⊆B,分类讨论,即可得到结论.
解答: 解:(1)阴影部分对应的集合为(∁UB)∩A,
∵B={x|log2(x+2)<4}={x|0<x+2<16}={x|-2<x<14}
∴∁UB={x|x≥14或x≤-2}.
∴(∁UB)∩A={x|x≥14或x≤-3}.
(2)若a+1≤2a,即a≥1时,C=∅,此时满足条件.
若a<1时,则
a<1
2a≥-2
a+1≤14

解得-1≤a<1,
综上a≥-1.
点评:本题主要考查集合的基本运算,利用Venn图,确定阴影部分的集合关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

旅游公司为3个旅游团提供北京、上海、香港、哈尔滨4条旅游线路,每个旅游团任选其中一条旅游线路.
(1)共有多少种不同的选法?
(2)求选择北京这条旅游线路的旅游团数ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,3),
b
=(6,x),且
a
b
,则x的值为(  )
A、4B、-4C、-9D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1+ax)(1+x)5的展开式中x2的系数为20,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论错误的是(  )
A、若ab>0,则
b
a
+
a
b
≥2
B、函数y=cosx+
1
cosx
(0<x<
π
2
)的最小值为2
C、函数y=2x+2-x的最小值为2
D、若x∈(0,1),则函数y=lnx+
1
lnx
≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(lnx+mx)有两个极值点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现有某种细胞1000个,其中有占总数
1
2
的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过(  )小时,细胞总数可以超过1010个?(参考数据:lg3=0.4771,lg2=0.3010)
A、39B、40C、41D、43

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程
x2
k-4
+
y2
k-6
=1表示双曲线,q:点 M(2,1)是椭圆
x2
5
+
y2
k
=1内一点,若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,若a1a3=2,a2a4=4,则a5=(  )
A、±4B、4C、±8D、8

查看答案和解析>>

同步练习册答案