精英家教网 > 高中数学 > 题目详情
12.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,…,仿此,若m3的“分裂数”中有一个是61,则m的值是(  )
A.6B.7C.8D.9

分析 由题意知,n的三次方就是n个连续奇数相加,且从2开始,这些三次方的分解正好是从奇数3开始连续出现,由此规律即可找出m3的“分裂数”中有一个是61时,m的值.

解答 解:由题意,从23到m3,正好用去从3开始的连续奇数共2+3+4+…+m=$\frac{(m+2)(m-1)}{2}$个,
61是从3开始的第30个奇数
当m=7时,从23到73,用去从3开始的连续奇数共$\frac{(7+2)(7-1)}{2}$=27个
当m=8时,从23到83,用去从3开始的连续奇数共$\frac{(8+2)(8-1)}{2}$=35个
所以m=8
故选:C.

点评 本题考查归纳推理,求解的关键是根据归纳推理的原理归纳出结论,其中分析出分解式中项数及每个式子中各数据之间的变化规律是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直角三角形ABC的三边之和为2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4)、(2,0)、(6,4).
(1)求f[f(0)]的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1+x)+(1+x)2+…+(1+x)n的所有二项式的各项系数和是(  )
A.2n+1B.2n+1+1C.2n+1-1D.2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线C以双曲线$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1的右焦点F为焦点,曲线C上的点到焦点F的距离与到直线x=-2的距离相等,则曲线C上的任意一点P到y轴的距离与到直线x-y+4=0的距离和的最小值为(  )
A.3$\sqrt{2}$B.3$\sqrt{2}$-1C.3$\sqrt{2}$+2D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\frac{θ}{2}$是第四象限角,且cos$\frac{θ}{2}$=$\sqrt{\frac{1+x}{x}}$,则sinθ的值为$\frac{\sqrt{-1-x}}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=-x2+3x,直线l1:x=t和l2:x=t+1(其中0≤t≤2,t为常数),若直线l1,l2,x轴与函数y=f(x)的图象所围成的封闭图形的面积为S,则S的最大值为(  )
A.2B.$\frac{11}{6}$C.$\frac{13}{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{2x-a}{x-2a}$.a∈R
(1)若1∈{x|f(x)>1},求a的取值范围.
(2)解不等式f(x)>1,用含a的代数式表示不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.廉华超市每月按出厂价3元/瓶购进一种饮料,根据以前的统计数据,若零售价定为4元/瓶,每月可销售400瓶;每瓶售价每降低0.05元,则可多销售40瓶,在每个月的进货量当月售完的前提下,请你给该超市设计一个方案:售价应定为多少元和从工厂购进多少瓶时,才可获得最大利润.

查看答案和解析>>

同步练习册答案