精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN
分析:(1)由题意可得 AB=AC=AD,BC=CD=DB,可得△ABC≌△ACD≌△ABD,可得∠BAC=∠CAD=∠DAB=30°,从而有∠BAB1=90°.
(2)由(1)可知,将侧面沿AB展开在同一个平面上连接BB′交AC,AD于点M,N 得BM+MN+NB′取最小值,最小值为:2BB′=
2
AB.
(3)当BM+MN+NB′取得最小值时,B、M、N、B′四点共线,由∠AMN=∠ABM+∠BAC=45°+30°=75°,∠ACD=
180°-∠BAC
2
=
180°-30°
2
=75°,可得∠AMN=
∠ACD,可得 MN∥CD,再由直线和平面平行的判定定理证得 CD∥平面BMN.
解答:解:(1)证明:由题意可得 AB=AC=AD,BC=CD=DB,∴△ABC≌△ACD≌△ABD,
∴∠BAC=∠CAD=∠DAB=30°,∠BAB=90°.
(2)由(1)可知,将侧面沿AB展开在同一个平面上,连接BB′(9分)
交AC,AD于点M,N 得BM+MN+NB′取最小值,最小值为:2BB′=
2
AB=
2
.(12分)
(3)当BM+MN+NB′取得最小值时,B、M、N、B′四点共线,
∠AMN=∠ABM+∠BAC=45°+30°=75°.
在等腰三角形ACD中,由于∠CAD=30°∴∠ACD=
180°-∠BAC
2
=
180°-30°
2
=75°,
故∠AMN=∠ACD,根据同位角相等,两直线平行可得  MN∥CD.
而MN?平面BMN,CD不在平面BMN 内,∴CD∥平面BMN.
点评:本题考查证明直线和平面平行的判定方法,棱锥的结构特征,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-PBC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且AB=2MP.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)若BC=4,AB=20,求三棱锥D-BCM的体积.

查看答案和解析>>

同步练习册答案