精英家教网 > 高中数学 > 题目详情

【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:

方案一:每月底薪2000元,每销售一件产品提成15元;

方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.

(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;

(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:

月销售产品件数

300

400

500

600

700

次数

2

4

9

5

4

把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.

【答案】(1);(2)方案一概率为,方案二概率为.

【解析】

1)利用一次函数和分段函数分别表示方案一、方案二的月工资的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.

解:(1)方案一:

方案二:月工资为,

所以.

(2)方案一中推销员的月工资超过11090元,则,解得

所以方案一中推销员的月工资超过11090元的概率为

方案二中推销员的月工资超过11090元,则,解得

所以方案二中推销员的月工资超过11090元的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:

(1)求关于的线性回归方程(计算结果精确到);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).

参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命题“若sinx=siny,则x=y”的逆否命题为真命题
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.命题“若△ABC为锐角三角形,则有sinA>cosB”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.

(1)求证:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的零点;

(2)若恒成立,求的取值范围;

(3)设函数,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.

(1)根据直方图求x的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有ξ户月用电量超过300度,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ax2+(2a﹣1)x.
(1)若a= ,求函数f(x)的单调区间;
(2)若x∈[1,+∞)时恒有f(x)≤a﹣1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的单调区间;
(2)当x≥1时,g(x)的最小值大于 ﹣lna,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}前n项和为Sn , a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于

查看答案和解析>>

同步练习册答案