精英家教网 > 高中数学 > 题目详情

(本小题共14分)

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ

(Ⅱ)求证:平面PQB⊥平面PAD

(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .

 

【答案】

 

证明:(Ⅰ)连接AC,交BQN,连接MN. ……………………1分

BCADBC=AD,即BCAQ

∴四边形BCQA为平行四边形,且NAC中点,

又∵点M在是棱PC的中点,

MN // PA                      ……………………2分

MN平面MQBPA平面MQB,…………………3分

PA // 平面MBQ.             ……………………4分

(Ⅱ)∵AD // BCBC=ADQAD的中点,

∴四边形BCDQ为平行四边形,∴CD // BQ .                  ……………………6分

∵∠ADC=90°    ∴∠AQB=90°  即QBAD

又∵平面PAD⊥平面ABCD

且平面PAD∩平面ABCD=AD,                                ……………………7分

BQ⊥平面PAD.                                             ……………………8分

BQ平面PQB

∴平面PQB⊥平面PAD.                                     ……………………9分

另证:AD // BCBC=ADQAD的中点

BC // DQBC= DQ, 

∴ 四边形BCDQ为平行四边形,∴CD // BQ

∵ ∠ADC=90°    ∴∠AQB=90°  即QBAD.                  ……………………6分

PA=PD,  ∴PQAD.                                     ……………………7分

PQBQ=Q,∴AD⊥平面PBQ.                            ……………………8分

AD平面PAD

∴平面PQB⊥平面PAD.                                     ……………………9分

(Ⅲ)∵PA=PDQAD的中点,  ∴PQAD

∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD.……10分

(不证明PQ⊥平面ABCD直接建系扣1分)

如图,以Q为原点建立空间直角坐标系.

则平面BQC的法向量为

.………11分

,    ∴                            ……………………12分

在平面MBQ中,

∴ 平面MBQ法向量为.                              ……………………13分

∵二面角M-BQ-C为30°, 

.                                                       ……………………14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

      数列的前n项和为,点在直线

上.

   (I)求证:数列是等差数列;

   (II)若数列满足,求数列的前n项和

   (III)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面

(Ⅱ)当EPB的中点时,求AE与平面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009北京理)(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线是圆上动点处的切线,与双曲线

于不同的两点,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题

(本小题共14分)

正方体的棱长为的交点,的中点.

(Ⅰ)求证:直线∥平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案