精英家教网 > 高中数学 > 题目详情

【题目】数列的前项和为,已知.

1)试写出

2)设,求证:数列是等比数列;

3)求出数列的前项和为及数列的通项公式.

【答案】12证明见解析;3

【解析】试题分析:当数列提供之间的递推关系时,借助首项的值,利用赋值法,可求出第二项及以后的项,并求出前几项的和,证明某数列是等比数列,就是证明第n+1项与第n项的比是一个常数,这个分析给证明提供一个暗示,有了证明的目标,从递推关系式向着这个目标进行等价变形,就可得出所要证明的式子,达到证明的目的;利用所证明的等比数列求出通项公式得出,进而求出通项.

试题解析:

1

2)由可得

整理

所以,又有

所以数列是等比数列,首项是1,公比为2.

3)由(2)可知,且,进而

所以数列的前项和

时, 也满足上式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,边AB、AD的长分别为2,1,若M,N分别是边BC、CD上的点,且满足 = =λ.

(1)当λ= 时,求向量 夹角的余弦值;
(2)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量的频率分布直方图,如图所示,将频率视为概率,回答以下问题.

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;

(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每

趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,

则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货

车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过的直线交于两点, 中点,点轴的距离为 .

(1)求的值;

(2)过分别作的两条切线 .请选择轴中的一条,比较到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个结论:
①在△ABC中,若sinA>sinB,则必有cosA<cosB;
②在△ABC中,若a,b,c成等比数列,则角B的取值范围为
③等比数列{an}中,若a3=2,a7=8,则a5=±4;
④等差数列{an}的前n项和为Sn , S10<0且S11=0,满足Sn≥Sk对n∈N*恒成立,则正整数k构成集合为{5,6}
⑤若关于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集为R,则a的取值范围为
其中正确结论的序号是 . (填上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(m+)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.

查看答案和解析>>

同步练习册答案