精英家教网 > 高中数学 > 题目详情

某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有两个定点投篮位置,在点投中一球得2分,在点投中一球得3分.其规则是:按先的顺序投
篮.教师甲在点投中的概率分别是,且在两点投中与否相互独立.
(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.

(1)分布列详见解析,;(2).

解析试题分析:本题主要考查独立事件、随机事件的分布列和数学期望等基础知识,考查学生的分析问题解决问题的能力和计算能力.第一问,先分析出教师甲投篮得分的不同情况,利用独立事件的概率的计算公式计算每一种情况的概率,列出分布列,利用求出数学期望;第二问,先分析出甲胜乙的情况,包括甲得2分,3分,4分,5分,7分的情况,利用第一问的分布列的表格,第一种情况:甲得2分,乙得0分;第二种情况:甲得3分,乙得0分或2分;第三种情况::甲得4分,乙得0分或2分或3分;第四种情况:甲得5分,乙得0分或2分或3分或4分;第五种情况:甲得7分,乙得0分或2分或3分或4分或5分,求出每一种情况的概率再相见得到所求结论.
试题解析:设“教师甲在点投中”的事件为,“教师甲在点投中”的事件为.
(1)根据题意知X的可能取值为0,2,3,4,5,7



    6分

X
0
2
3
4
5
7
P






所以X的分布列是:
    8分
(2)教师甲胜乙包括:甲得2分、3分、4分、5分、7分五种情形.
这五种情形之间彼此互斥,因此,所求事件的概率为:

    12分
考点:独立事件、随机事件的分布列和数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);
(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.
(1)求一次试验成功的概率.
(2)求恰好在第3次试验成功的概率(要求将结果化为最简分数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(1)求直线与圆相切的概率;
(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2014年2月21日,《中共中央关于全面深化改革若干重大问题的决定》明确:坚持计划生育的基本国策,启动实施一方是独生子女的夫妇可生育两个孩子的政策.为了解某地区城镇居民和农村居民对“单独两孩”的看法,某媒体在该地区选择了3600人调查,就是否赞成“单独两孩”的问题,调查统计的结果如下表:


赞成
反对
无所谓
农村居民
2100人
120人
y人
城镇居民
600人
x人
z人
已知在全体样本中随机抽取1人,抽到持“反对”态度的人的概率为0.05.
(1)现在分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“反对”态度的人中,用分层抽样的方法抽取6人,按每组3人分成两组进行深入交流,求第一组中农村居民人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两个盒子中分别装有标记为的大小相同的四个小球,甲从盒中等可能地取出个球,乙从盒中等可能地取出个球.
(1)用有序数对表示事件“甲抽到标号为的小球,乙抽到标号为的小球”,试写出所有可能的事件;
(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜.你认为此规则是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种食品是经过三道工序加工而成的,工序的产品合格率分别为.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号
A1
A2
A3
A4
A5
质量指标(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样品的一等品中,随机抽取两件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

同步练习册答案