精英家教网 > 高中数学 > 题目详情
则正数的k取值范围( )
A.(0,1)
B.(0,+∞)
C.[1,+∞)
D.
【答案】分析:当x1>0,x2>0时,恒成立,则只要即可,从而对函数f(x)利用基本不等式求解最大值,对函数g(x)利用导数判断单调性,进而求解函数g(x)的最小值,代入可求k的范围
解答:解:当x>0时,由基本不等式可得,f(x)==

当x≥1时,g′(x)≥0;x<1时g′(x)<0
∴g(x)在(-∞,1)单调递减,在[1,+∞)单调递增
从而可得当x=1时函数g(x)有最小值e
当x1>0,x2>0时,恒成立,且k>0
则只要即可
,解可得k≥1
故选:C
点评:本题主要考查了由函数的恒成立问题求解参数的取值范围的问题,解决问题的关键是转化为求解函数的最值,还要注意在本题中求解函数最值时用的两种方法:基本不等式及由导数判断函数的单调性,结合单调性质求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
x
e-2+x2
,g(x)=
ex
x
,对?x1x2R+,有
f(x1)
k
g(x2)
k+1
恒成立,
 
则正数的k取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

数学公式则正数的k取值范围


  1. A.
    (0,1)
  2. B.
    (0,+∞)
  3. C.
    [1,+∞)
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x
e-2+x2
,g(x)=
ex
x
,对?x1x2R+,有
f(x1)
k
g(x2)
k+1
恒成立,
 
则正数的k取值范围(  )
A.(0,1)B.(0,+∞)C.[1,+∞)D.[
1
2e2-1
,+∞)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省宜昌市枝江一中高考一轮复习数学专项训练:集合、函数、导数(解析版) 题型:选择题

则正数的k取值范围( )
A.(0,1)
B.(0,+∞)
C.[1,+∞)
D.

查看答案和解析>>

同步练习册答案