精英家教网 > 高中数学 > 题目详情

【题目】足球比赛中,一队在本方罚球区内犯规,会被判罚点球,点球是进攻方非常有效的得分手段.研究机构对某位足球队员的1000次点球训练进行了统计分析,以帮助球员提高点球的命中率.如图,将球门框内的区域分成9个区域(区域代码为1—9,球门框外的区域记做区域0),统计球员射点球时射中10个区域次数和进球次数(即使射中球门框内,也可能被守门员扑出),得到如下的两个频率分布条形图:

(其中射中率,得分率

1)根据上述频率分布条形图,求射中球门框内时,各区域进球数的平均数(结果保留两位小数)和中位数;

2)以该队员这1000次点球练习的进球频率作为他在比赛中射点球时进球的概率,设他在三次射点球时进球数为,求的分布列和期望.

【答案】1)平均数;中位数为812)详见解析

【解析】

1)先求得各区域的进球数,再求平均数和中位数即可;

2)先求得比赛中射点球时进球的概率,再根据服从二项分布,即可容易求得分布列和数学期望.

1)由频率分布直方图可知,射中门框内的区域1时,进球数为

同理可求得区域29的进球数分别为:6391918181817070.

各区域进球数的平均数.

容易知中位数为81.

2)由(1)可知该队员这1000次点球练习的进球数:

他在比赛中射点球时进球的概率.

进球数为一个随机变量,可能取值为0123.

.

.

随机变量的分布列为:

0

1

2

3

0.027

0.189

0.441

0.343

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若过点,抛物线在点处的切线与在点处的切线交于点.证明:点在定直线上.

2)若,点在曲线上,的中点均在抛物线上,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.

(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数

(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望

(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):

,②

,其中

评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间(分钟)

10

11

12

13

14

15

等侯人数(人)

23

25

26

29

28

31

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.

1)若选取的是后面4组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;

2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a.

1)若,且内有且只有一个零点,求a的值;

2)若,且有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;

3)若,试讨论是否存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的顶点,且成等差数列.

1)求的顶点的轨迹方程;

2)直线与顶点的轨迹交于两点,当线段的中点落在直线上时,试问:线段的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,已知四边形ABCD是边长为2的正方形,平面ABCDE是棱PB的中点,且过AEAD的平面与棱PC交于点F.

1)求证:

2)若平面平面PBC,求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的左右焦点分别为F1F2,点P是椭圆C上一点,以PF1为直径的圆Ex2过点F2

1)求椭圆C的方程;

2)过点P且斜率大于0的直线l1C的另一个交点为A,与直线x4的交点为B,过点(3)且与l1垂直的直线l2与直线x4交于点D,求△ABD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m{1113151719}n{200020012019},则mn的个位数是1的概率为____________ .

查看答案和解析>>

同步练习册答案