精英家教网 > 高中数学 > 题目详情

【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

1)求频率分布直方图中的值;

2)根据频率分布直方图估计该组数据的中位数(精确到);

3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.

【答案】127.73

【解析】

1)由直方图知,由此能求出

2)由频率分布直方图中的中位数为频率为0.5对应的横坐标,即可能估计高二数学成绩的中位数;

3)记成绩落在中的2人为,成绩落在中的3人为,从成绩在的学生中任选2人,利用列举法能求出2人的成绩都在中的概率.

1)由直方图可得:,解得:.

2)该组数据的中位数:.

3)成绩在人,记为,成绩在人,记为

设事件人的成绩都在,所有的基本事件为:

种,

满足条件的基本事件为:3

,故人的成绩都在中的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的一个顶点为抛物线的顶点 两点都在抛物线上,且.

(1)求证:直线必过一定点;

(2)求证: 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资AB两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y118B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).

(1)该公司已有100万元资金,并全部投入AB两种产品中,其中x万元资金投入A产品,试把AB两种产品利润总和表示为x的函数,并写出定义域;

(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:.

(1)讨论的单调性;

(2)当时,证明:

(i)在点处的切线与的图像至少有两个不同的公共点;

(ii)若另有公共点为,其中,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,左焦点为,过点且斜率为的直线交椭圆于两点.

1)求椭圆的方程;

2)求的取值范围;

3)在轴上,是否存在定点,使恒为定值?若存在,求出点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.

(I)求椭圆的方程和抛物线的方程;

(II)设上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在极坐标系中,为极点,点,点.

(1)以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,求经过三点的圆的直角坐标方程;

(2)在(1)的条件下,圆的极坐标方程为,若圆与圆相切,求实数的值.

查看答案和解析>>

同步练习册答案