精英家教网 > 高中数学 > 题目详情

已知数列{an}的通项公式an=n2cosnπ,Sn为它的前n项的和,则数学公式=


  1. A.
    1005
  2. B.
    1006
  3. C.
    2009
  4. D.
    2010
A
分析:根据an=n2cosnπ,可得an=(-1)n×n2,进而S2010=-12+22-32+42-…-20092+20102,两两合并,即可得到结论.
解答:∵an=n2cosnπ,∴an=(-1)n×n2
∴S2010=-12+22-32+42-…-20092+20102=(2+1)(2-1)+(4+3)(4-3)+…+(2010+2009)(2010-2009)
=3+7+11+…+4019==1005×2011
=1005
故选A.
点评:本题考查数列的求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
1
Sn+n
,则数列{bn}的前n项和的取值范围为(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=
an
bn+1
,其中a、b均为正常数,那么数列{an}的单调性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知数列{an}的通项公式是 an=
na
(n+1)b
,其中a、b均为正常数,那么 an与 an+1的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1
n+1
+
n
求它的前n项的和.

查看答案和解析>>

同步练习册答案