(本小题满分13分)
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
(I)的最大值是16
(II).
【解析】解:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,
设两实根为(),则,且.于是
,,且当,即,时等号成立.故的最大值是16.
(II)解法一:由知在点处的切线的方程是
,即,
因为切线在点处空过的图象,
所以在两边附近的函数值异号,则
不是的极值点.
而,且
.
若,则和都是的极值点.
所以,即,又由,得,故.
解法二:同解法一得
.
因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在().
当时,,当时,;
或当时,,当时,.
设,则
当时,,当时,;
或当时,,当时,.
由知是的一个极值点,则,
所以,又由,得,故.
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com