精英家教网 > 高中数学 > 题目详情

【题目】.已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)已知函数的图象在公共点(x0y0)处有相同的切线,

(i)求证:处的导数等于0;

(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

【答案】(I)单调递增区间为,单调递减区间为.(II)(i)见解析.(ii).

【解析】

试题求导数后因式分解根据,得出,根据导数的符号判断函数的单调性,给出单调区间,对求导,根据函数的图象在公共点(x0y0)处有相同的切线,解得,根据的单调性可知上恒成立,关于x的不等式在区间上恒成立,得出,得

求出的范围,得出的范围.

试题解析:(I)由,可得

,解得,或.由,得.

变化时,的变化情况如下表:

所以,的单调递增区间为,单调递减区间为.

(II)(i)因为,由题意知

所以,解得.

所以,处的导数等于0.

(ii)因为,由,可得.

又因为,故的极大值点,由(I)知.

另一方面,由于,故

由(I)知内单调递增,在内单调递减,

故当时,上恒成立,从而上恒成立.

,得.

,所以

,解得(舍去),或.

因为,故的值域为.

所以,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形,不妨设 , 边上的高为 ,圆心为 ,为了使三角形的面积最大,我们设计了两种方案.

(1)方案1:设 ,用表示 的面积 ; 方案2:设的高,用表示 的面积

(2)请从(1)中的两种方案中选择一种,求出面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABC.DEN分别为棱PAPCBC的中点,M是线段AD的中点,.

1)求证:平面BDE

2)求二面角C-EM-N的正弦值.

3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,离心率为.分别是椭圆的上、下顶点,是椭圆上异于的一点.

1)求椭圆的方程;

2)若点在直线上,且,求的面积;

3)过点作斜率为的直线分别交椭圆于另一点,交轴于点,且点在线段上(不包括端点),直线与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆为左、右焦点,为短轴端点,且,离心率为,为坐标原点.

(1)求椭圆的方程,

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,,且满足?若存在,求出该圆的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对“2016年春节放假安排开展网上问卷调查,提出了AB两种放假方案,调查结果如表:(单位:万人)

人群

青少年

中年人

老年人

支持A方案

200

400

800

支持B方案

100

100

n

已知从所有参与调查的人中任选1人是老年人的概率为.

(1)n的值;

(2)从参与调查的老年人中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1支持B方案的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

同步练习册答案