【题目】已知
(I)求函数的极值;
(II)设,若有两个零点,求的取值范围.
【答案】(I)时,没有极值,时有极小值;(II).
【解析】
(I)求得函数的,将分成两类,利用的正负情况,得到的单调区间,进而求得的极值.(II)先求得函数的表达式,并求得其导数,对分成 类,利用的单调区间和极值情况,结合题意“有两个零点”的要求,求得的取值范围.
(I).(1)若,显然,所以在上递增,所以没有极值.(2)若,则,,所以在上是减函数,在上是增函数.所以在处取极小值,极小值为.(II).函数的定义域为,且.(1)若,则;.所以在上是减函数,在上是增函数.所以.令,则.显然,所以在上是减函数.又函数在上是减函数,取实数,则.又,在上是减函数,在上是增函数.由零点存在性定理,在上各有一个唯一的零点.所以符合题意.(2)若,则,显然仅有一个零点.所以不符合题意.(3)若,则.①若,则.此时,即在上递增,至多只有一个零点,所以不符合题意.②若,则,函数在上是增函数,在上是减函数,在上是增函数,所以在处取得极大值,且极大值,所以最多有一个零点,所以不符合题意.③若,则,函数在和上递增,在上递减,所以在处取得极大值,且极大值为,所以最多有一个零点,所以不符合题意.综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】将这个自然数随机地排列在的正方形方格内,对于同一行或同一列中的任意两个数,计算较大数与较小数的商,得到个分数.把最小的分数称之为这种排列的“特征值”.试求特征值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读下面的类比过程。
(1)在一维直线上,线段是一个封闭的中心对称图形,有命题1:不重合的两点决定一条线段;
(2)在二维平面上,圆是一个封闭的中心对称图形,有命题2:不共线的三点决定一个圆;
(3)在三维空间中,球是一个封闭的中心对称图形,类比猜想:不共面的四点决定一个球。
证明或否定这个类比猜想:不共面的四点决定一个球。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,,,,,.
(Ⅰ)求异面直线AB与PD所成角的余弦值;
(Ⅱ)证明:平面平面PBD;
(Ⅲ)求直线DC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分).以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界曲线符合函数模型.园区服务中心P在x轴正半轴上,PO=百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道直线段PQ最短.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com