分析 由等比数列{an}前n项和满足Sn=1-A•3n,分别求出前三项,利用等比数列{an}中${{a}_{2}}^{2}={a}_{1}{a}_{3}$,能求出A.根据数列{bn}是递增数列,且bn=An2+Bn=n2+Bn,利用bn+1-bn>0,能求出B的取值范围.
解答 解:∵等比数列{an}前n项和满足Sn=1-A•3n,
∴a1=S1=1-3A,
a2=S2-S1=(1-9A)-(1-3A)=-6A,
a3=S3-S2=(1-27A)-(1-9A)=-18A,
∵等比数列{an}中${{a}_{2}}^{2}={a}_{1}{a}_{3}$,
∴36A2=(1-3A)(-18A),
解得A=1或A=0(舍),故A=1.
∵数列{bn}是递增数列,且bn=An2+Bn=n2+Bn,
∴bn+1-bn=(n+1)2+B(n+1)-(n2+Bn)=2n+1+B>0.
∴B>-2n-1,
∵n∈N*,∴B>-3.
∴B的取值范围为(-3,+∞).
故答案为:1,(-3,+∞).
点评 本题考查实数值的求法,考查实数的取值范围的求法,是基础题,解题时要认真审题,注意等比数列的性质、递增数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{\frac{3}{2},2}]$ | B. | $[{\frac{3}{2},2})$ | C. | $[{\frac{5}{4},\frac{4}{3}})$ | D. | $[{\frac{5}{4},\frac{4}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 4 | 2 | 3 | 5 |
y | 38 | 20 | 31 | 51 |
A. | 60 | B. | 70 | C. | 73 | D. | 69 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com