(本小题满分12分)
如图所示,五面体ABCDE中,正的边长为1,AE丄平面ABC, CD//AE,且CD =AE.
(I)设CE与平面ABE所成的角为a,AE=k(k>0),若,求A的取值范围;
(II)在(I )的条件下,当k取得最大值时,求平面BDE与平面ABC所成角的大小.
(本小题满分12分)
解:方法一:
(Ⅰ)取中点,连结、,由为正三角形,得,又,则,可知,所以为与平面所成角.……………2分
,………………4分
因为,得,得.……………6分
(Ⅱ)延长交于点S,连,
可知平面平面=.………………………7分
由,且,又因为=1,从而,…………………8分
又面,由三垂线定理可知,即为平面与平面所成的角;……………………10分
则,
从而平面与面所成的角的大小为.………………12分
方法二:
解:
(Ⅰ)如图以C为坐标原点,CA、CD为y、z轴,垂直于CA、CD的直线CT为x轴,建立空间直角坐标系(如图),则
设,,,.……………2分
取AB的中点M,则,
易知,ABE的一个法向量为,
由题意.………………4分
由,则,
得.…………………6分
(Ⅱ)由(Ⅰ)知最大值为,则当时,设平面BDE法向量为,则
取,………………8分
又平面ABC法向量为,……………………10分
所以=,
所以平面BDE与平面ABC所成角大小……………………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com