精英家教网 > 高中数学 > 题目详情

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

【答案】1005204531200

【解析】试题分析:()先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;()先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;()先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果

试题解析:把3只黄色乒乓球标记为ABC3只白色的乒乓球标记为123

6个球中随机摸出3个的基本事件为:ABCAB1AB2AB3AC1AC2AC3A12A13A23BC1BC2BC3B12B13B23C12C13C23123,共20

1.事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出1233个球,PE=1/20=005

2.事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,PF=9/20=045

3.事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球}PG=2/20=01,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足+n=2(n∈)

(1)证明:数列为等比数列,并求数列的通项公式;

(2)数列满足(n∈),其前n项和为,试求满足+>2018的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期和递减区间;

(2)当时,求的最大值和最小值,以及取得最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1、F2为椭圆的两个焦点,以F2为圆心作圆F2 , 已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为(  )
A. ﹣1
B.2﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和支出的维修费用y(万元),有如下表的统计资料:

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

若由资料知yx呈线性相关关系,试求:
(1)线性回归方程 .
(2)估计使用年限为10年时,维修费用是多少.
(3)计算总偏差平方和、残差平方和及回归平方和.
(4)求 并说明模型的拟合效果.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求证:数列{ }是等差数列,并求{an}的通项公式;
(Ⅱ)设bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 试比较an与8Sn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

同步练习册答案