精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为R的奇函数.

1)求t的值,并写出的解析式;

2)判断R上的单调性,并用定义证明;

3)若函数上的最小值为,求k的值.

【答案】1;(2R上单调递增,证明见解析;(3

【解析】

1是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;

(2)可判断上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;

(3)由,换元令,由(2)得,根据条件转化为最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解

解:(1)因为是定义域为R的奇函数,

所以,即,解得

可知,此时满足

所以.

2R上单调递增.

证明如下:设,则

.

因为,所以

所以,可得.

因为当时,有

所以R单调递增.

3)由(1)可知

,则

因为是增函数,且,所以.

因为上的最小值为

所以上的最小值为.

因为

所以当时,

解得(舍去);

时,,不合题意,舍去.

综上可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场对顾客实行购物优惠活动规定,一次购物付款总额

1)如果标价总额不超过200元,则不给予优惠;

2)如果标价总额超过200元但不超过500元,则按标价总额给予9折优惠;

3)如果标价总额超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予8折优惠.

某人两次去购物,分别付款180元和423元,假设他一次性购买上述两次同样的商品,则应付款(

A.550B.560C.570D.580

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2.

(1)求椭圆的方程;

(2)已知直线与椭圆交于两点,且与轴,轴交于两点.

(i)若,求的值;

(ii)若点的坐标为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是实常数.

1)当时,判断函数的奇偶性,并给出证明;

2)若是奇函数,不等式有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表经计算,则下列选项正确的是( )

使用智能手机

不使用智能手机

合计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

合计

20

10

30

附表

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

A. 有99.5%的把握认为使用智能手机对学习有影响

B. 有99.5%的把握认为使用智能手机对学习无影响

C. 有99.9%的把握认为使用智能手机对学习有影响

D. 有99.9%的把握认为使用智能手机对学习无影响

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数部分图象如图所示.

1)求函数的解析式及的单调递增区间;

2)把函数图象上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于x的方程上所有的实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,,,,,点上,且,将沿折起,使得平面平面 (如图), 中点.

(1)求证: 平面;

(2)在线段上是否存在点,使得平面?若存在,求的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

同步练习册答案