精英家教网 > 高中数学 > 题目详情
19.如图,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于点E,点D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判断直线 AC与△BDE的外接圆的位置关系并说明理由;
(II)求EC的长.

分析 (I)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;
(II)设⊙O的半径为r,根据勾股定理得${({r+2\sqrt{3}})^2}={r^2}+{6^2}$,解得r=2$\sqrt{3}$,根据平行线分线段成比例定理,由OE∥BC得$\frac{AE}{CE}$=$\frac{AO}{OB}$,然后根据比例性质可计算出EC.

解答 解:(I)取BD的中点0,连结OE,如图,
∵DE⊥EB,
∴∠BED=90°,
∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴OE⊥AE,
∴AC是△BDE的外接圆的切线.
(II)设△BDE的外接圆的半径为r.
在△AOE中,OA2=OE2+AE2,即${({r+2\sqrt{3}})^2}={r^2}+{6^2}$,解得$r=2\sqrt{3}$,
∵OE∥BC,
∴$\frac{AE}{CE}$=$\frac{AO}{OB}$,即$\frac{6}{CE}$=$\frac{4\sqrt{3}}{2\sqrt{3}}$,
∴CE=3.

点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理和平行线分线段成比例定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(-3,2,5),\overrightarrow b=(1,5,-1),则\overrightarrow a•\overrightarrow b$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M(3,-2),N(-5,-1),且$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则点P是(  )
A.(-8,1)B.(-1,-$\frac{3}{2}$)C.(1,$\frac{3}{2}$)D.(8,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数${z_1}=\frac{1}{2}-\frac{{\sqrt{3}i}}{2}$和复数z2=cos30°+isin30°,则z1•z2为(  )
A.1B.-1C.$-\frac{1}{2}i$D.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)满足对定义域内的任意x,都有f(x+2)+f(x)<2f(x+1),则函数f(x)可以是(  )
A.f(x)=lnxB.f(x)=x2-2xC.f(x)=exD.f(x)=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x+y2=${∫}_{0}^{y-x}$cos2tdt,求$\frac{dy}{dx}$.

查看答案和解析>>

同步练习册答案