精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

【答案】D

【解析】

根据函数的单调性可得an+1﹣an0对于n∈N*恒成立,建立关系式,解之即可求出k的取值范围.

数列{an},且{an}单调递增

∴an+1﹣an0对于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0对于n∈N*恒成立

∴k<2n+1对于n∈N*恒成立,即k<3

故选:D.

【点睛】

本题主要考查了数列的性质,本题易错误地求导或把它当成二次函数来求解,注意n的取值是解题的关键,属于易错题.

型】单选题
束】
8

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克)

规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个.求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元.根据上表统计得到的甲、乙两种食品为一等品、二等品、劣质品,的频率分别估计这两种食品为,一等品、二等品、劣质品的概率.若分别从甲、乙食品中各抽取l件,设这两件食品给该厂带来的盈利为X,求随机变量X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(

A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,且a1= , an+1=2Sn﹣2n , 则a8=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】则一定有( )

A. B. C. D.

【答案】D

【解析】本题主要考查不等关系。已知,所以,所以,故。故选

型】单选题
束】
5

【题目】关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},则关于x的不等式bx2-ax-2>0的解集为(  )

A. {x|-2<x<1} B. {x|x>1或x<-2}

C. {x|x>2或x<-1} D. {x|x<-1或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若lg(3x)+lg y=lg(x+y+1),则xy的最小值为(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

先根据对称的运算性质化简得到3xy=x+y+1,再根据基本不等式即可求出答案.

∵lg(3x)+lgy=lg(3xy)=lg(x+y+1),x>0,y>0,

∴3xy=x+y+1,

∴3xy≥3,当且仅当x=y=1时取等号,

即xy≥1,

xy的最小值是1,

故选:A

【点睛】

在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误

型】单选题
束】
12

【题目】已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设B、C是定点,且均不在平面α上,动点A在平面α上,且sin∠ABC= , 则点A的轨迹为(  )
A.圆或椭圆
B.抛物线或双曲线
C.椭圆或双曲线
D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=2an+1.
(1)求数列{an}的通项公式;
(2)令bn=n(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的一个焦点为,对应于这个焦点的准线方程为

(1)写出抛物线的方程;

(2)过点的直线与曲线交于两点,点为坐标原点,求重心的轨迹方程;

(3)点是抛物线上的动点,过点作圆的切线,切点分别是.点在何处时,的值最小?求出的最小值.

查看答案和解析>>

同步练习册答案