【题目】已知双曲线以、为焦点,且过点
(1)求双曲线与其渐近线的方程;
(2)是否存在斜率为2的直线与双曲线右支相交于两点,且(为坐标原点).若存在,求直线的方程;若不存在,说明理由.
【答案】(1), (2)存在,
【解析】
(1)设出双曲线C方程,利用定义求得a,进而得b,即可求出双曲线方程与渐近线的方程;
(2)设直线l的方程为y=2x+t,将其代入方程,设A(x1,y1),B(x2,y2),通过△>0,及韦达定理求出t的范围,通过x1x2+y1y2=0,求解t即可得到直线方程.
(1)设双曲线C的方程为,半焦距为c,
则c=2,,a=1,
所以b2=c2﹣a2=3,
故双曲线C的方程为.
双曲线C的渐近线方程为.
(2)假设直线存在,设直线l的方程为y=2x+t,将其代入方程,
可得x2+4tx+t2+3=0(*)
设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,
故
又由,可知x1x2+y1y2=0,
即x1x2+(2x1+t)(2x2+t)=0,可得,
解得(舍去)
所以存在直线l方程为.
科目:高中数学 来源: 题型:
【题目】为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:
未发病 | 发病 | 总计 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
总计 | 50 | 50 | 100 |
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.
(1)求列联表中的数据,,,的值;
(2)判断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
(参考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为且过点椭圆C与轴的交点为A、B(点A位于点B的上方),直线与椭圆C交于不同的两点M、N(点M位于点N的上方).
(1)求椭圆C的方程;
(2)求△OMN面积的最大值;
(3)求证:直线AN和直线BM交点的纵坐标为常值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,且,.
(1)求数列的前项和;
(2)是否存在正整数,,使得,,成等比数列?若存在,求出所有的,;若不存在,说明理由;
(3)设,若对一切正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若存在正常数,使得对一切均成立,则称是“控制增长函数”。在以下四个函数中:①②③④是“控制增长函数”的有(空格上填入函数代码)________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:对于任意正数,都有,且,则称函数为“函数”。
(1)试判断函数是否是“函数”并说明理由;
(2)若函数为“函数”,求实数的取值范围;
(3)若函数为“函数”,且.
求证();
()对任意,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(4,0)、B(1,0),动点M满足|AM|=2|BM|.
(1)求动点M的轨迹C的方程;
(2)直线l:x+y=4,点N∈l,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等边的边长为,点,分别是,上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).
(1)求证:平面;
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com