【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.
【答案】解:(Ⅰ)解:函数g(x)的定义域为(0,+∞),导函数为 .
①当a≤0时,g′(x)>0恒成立,g(x)在定义域(0,+∞)上是增函数;
②当a>0时, ,并且,
在区间(0, )上,g′(x)>0,∴g(x)在(0, )是增函数;
在区间( ,+∞)上,g′(x)<0,∴g(x)在区间( ,+∞)上是减函数.
(Ⅱ)证明:当a>0时,在区间(0,1]上,f(x)<0是显然的,即在此区间上f(x)没有零点;又由于f(x)有两个零点,则必然f(x)在区间(1,+∞)上有两个零点x1,x2(x1<x2),
f′(x)=lnx-2a(x-1),由(Ⅰ)知,f′(x)在区间(0, )上是增函数,在区间( ,+∞)上是减函数.
①若 ,则 ,在区间(1,+∞)上,f′(x)是减函数,f′(x)≤f′(1)=0,f(x)在(1,+∞)上单调递减,不可能有两个零点,所以必然有 .
②当 时,在区间(1, )上,f′(x)是增函数,f′(x)>f′(1)=0;
在区间( ,+∞)上,f′(x)是减函数.依题意,必存在实数x0,使得在区间( ,x0)上,f′(x)>0,f(x)是增函数;在区间(x0,+∞)上,f′(x)<0,f(x)是减函数.此时x0>1,且x0是f(x)的极大值点.
所以f(x0)>0,且f′(x0)=0,即 消去a得到x0lnx0+lnx0-2x0>0(x0>1).
设F(x)=xlnx+lnx-2x(x>1), .
∵ ,∴x>1时,F′(x)单调递增.又F′(1)=0,
∴x>1时,F′(x)>0.∴x>1时,F(x)单调递增.
又F(1)=-2<0,F(e2)=2>0.∴存在x0=e2>1满足题意.
亦可直接观察得到,x0=e2时,e2lne2+lne2-2e2=2>0,满足题意.
【解析】(Ⅰ)先求得函数g(x)的导函数,对a进行分类讨论并分别判断函数g′(x)值大于零与小于零的区间,从而得到函数g(x)的单调区间;(Ⅱ)先函数f(x)零点存在的区间,再利用零点的存在区间确定a的取值范围,再结合零点的存在性得到满足题意的x0,对设出的F(x)求得最大值为0的情况,从而求出x0的具体值.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
科目:高中数学 来源: 题型:
【题目】在2017年初的时候,国家政府工作报告明确提出,2017年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少,6月至11月的用煤量如下表所示:
(1)由于某些原因, 中一个数据丢失,但根据6至9月份的数据得出少样本平均值是3.5,求出丢失的数据;
(2)请根据6至9月份的数据,求出关于的线性回归方程;
(3)现在用(2)中得到的线性回归方程中得到的估计数据与10月11月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过0.3,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?(参考公式:线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为x,求x的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE
(1)求证:AB⊥平面AEC′;
(2)当四棱锥C′﹣ABFE体积取最大值时,
①若G为BC′中点,求异面直线GF与AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2 sin( ωx)cos( ωx)+2cos2( ωx)(ω>0),且函数f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在区间 上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100),若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1);(2)
【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k==8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k==1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com