精英家教网 > 高中数学 > 题目详情

【题目】已知0<x<1,0<y<1, 求证 + + + ≥2 ,并求使等号成立的条件.

【答案】证明:∵0<x<1,0<y<1,设P(x,y),A(1,0),B(1,1),C(0,1),如图: 则|PO|= ,|PA|= ,|PB|= ,|PC|=
∵|PO|+|PB|≥|BO|= ,|PA|+|PC|≥|AC|=
∴|PO|+|PB|+|PA|+|PC|≥2 (当且仅当点P为正方形的对角线AC与OB的交点是取等号),
即x=y= 时取等号.
+ + +

【解析】依题意,作图如下,利用两点间的距离公式可知|PO|= ,|PA|= ,|PB|= ,|PC|= ,利用三角不等式可证|PO|+|PB|+|PA|+|PC|≥2
【考点精析】解答此题的关键在于理解二维形式的柯西不等式的相关知识,掌握二维形式的柯西不等式:当且仅当时,等号成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据调查,某地区有300万从事传统农业的农民,人均年收入6000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有万人进企业工作,那么剩下从事传统农业的农民的人均年收入有望提高,而进入企业工作的农民的人均年收入为元.

1)在建立加工企业后,多少农民进入企业工作,能够使剩下从事传统农业农民的总收入最大,并求出最大值;

2)为了保证传统农业的顺利进行,限制农民加入加工企业的人数不能超过总人数的,当地政府如何引导农民,即取何值时,能使300万农民的年总收入最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中,①的一个充要条件是与它的共轭复数相等:

②利用独立性检验来考查两个分类变量是否有关系,当随机变量的观测值值越大,“有关系”成立的可能性越大;

③在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好;

④若是两个相等的实数,则是纯虚数;

⑤某校高三共有个班,班有人,班有人,班有人,由此推测各班都超过人,这个推理过程是演绎推理.

其中真命题的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(n)=1+ + +…+ (n∈N*),计算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推测当n≥2时,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,已知上,且平面.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )图象的一部分.为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点(
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线l,设圆C的半径为1,圆心在l上.

若圆心C也在直线上,过A作圆C的切线,求切线方程;

若圆C上存在点M,使,求圆心C的横坐标a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

1

2

4

5

销售额y(万元)

6

14

28

32

根据上表中的数据可以求得线性回归方程 = x+ 中的 为6.6,据此模型预报广告费用为10万元时销售额为(
A.66.2万元
B.66.4万元
C.66.8万元
D.67.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

查看答案和解析>>

同步练习册答案