精英家教网 > 高中数学 > 题目详情

【题目】下列说法:

①函数的单调增区间是

②若函数定义域为且满足,则它的图象关于轴对称;

③函数的值域为

④函数的图象和直线的公共点个数是,则的值可能是

⑤若函数上有零点,则实数的取值范围是.

其中正确的序号是_________.

【答案】③ ④ ⑤

【解析】

根据当x=0时,函数的解析式无意义可判断①;根据函数对称性,可得函数y=f(x)的图象关于直线x=1对称,可判断②;画出函数f(x)=(x∈R)的图象,结合函数图象分析出函数的值域,可判断③;画出函数y=|3﹣x2|的图象,可分析出函数y=|3﹣x2|的图象和直线y=a(a∈R)的公共点个数,可判断④;根据二次函数的图象和性质分析出函数f(x)=x2﹣2ax+5(a>1)在x∈[1,3]上有零点,实数a的取值范围,可判断⑤.

当x=0时,x2﹣2x﹣3=﹣3,此时无意义,故①错误;

若函数y=f(x)满足f(1﹣x)=f(x+1),则函数y=f(x)的图象关于直线x=1对称,故②错误;

画出函数f(x)=(x∈R)的图象如图,

由图可得函数的值域为(﹣1,1);

画出函数y=|3﹣x2|的图象

由图可知,函数y=|3﹣x2|的图象和直线y=a公共点可能是0,2,3,4个,故④正确

若f(x)在x∈[1,3]上有零点,则f(x)=0在x∈[1,3]上有实数解

∴2a=x+在x∈[1,3]上有实数解

令g(x)=x+则g(x)在[1,]单调递减,在(,3]单调递增且g(1)=6,g(3)=,∴2≤g(x)≤6,即2≤2a≤6,故 ≤a≤3故⑤正确

故答案为:③④⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的偶函数,且对任意的恒有,已知当时,,则下列命题:

①对任意,都有;②函数上递减,在上递增;

③函数的最大值是1,最小值是0;④当时,.

其中正确命题的序号有________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为F,直线y轴的交点为P,与C的交点为Q,且.

1)求C的方程;

2)过F的直线C相交于AB两点,若AB的垂直平分线C相较于MN两点,且AMBN四点在同一圆上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河北保定市高三上学期期末调研如图,四面体中, 分别的中点,

I)求证: 平面

II)求异面直线所成角的余弦值的大小;

III)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).
(1)求V关于α的函数关系式;
(2)当α为何值时,V取得最大值;
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 的充分条件,求实数 的取值范围;

(2)若 ”为真命题,“”为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个工厂生产某种产品的固定成本(固定投入)为元,已知每生产件这样的产品需要再增加成本(元).已知生产出的产品都能以每件元的价格售出.

)将该厂的利润(元)表示为产量(件)的函数.

)要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+c(a≠0)经过点(﹣1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若数列{an}的前n项和Sn满足Sn=f(n),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱

B. 四棱锥的四个侧面都可以是直角三角形

C. 有两个面互相平行,其余各面都是梯形的多面体是棱台

D. 以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥

查看答案和解析>>

同步练习册答案