精英家教网 > 高中数学 > 题目详情

已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线L:x+y-1=0上,求

(1)求圆心为C的圆的标准方程;

(2)设点P在圆C上,点Q在直线x-y+5=0上,求|PQ|的最小值.

(3)若直线kx-y+5=0被圆C所截得弦长为8,求k的取值.

答案:
解析:

  解:①AB中点M(),KAB=3

  则AB中垂线l的方程为:y=-x-1

  ∴l与L的交点即圆心C(3,-2),半径r=AC2=25

  ∴圆C的标准方程为:(x-3)2+(y+2)2=25

  ②∵圆心C到直线x-y+5=0的距离为:d=>r

  ∴直线与圆C相离,则PQ的最小值为d-r=-5.

  ③由条件可知:圆心C到直线的距离为3,

  根据点到直线的距离公式求得:k=-


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,2)和B(-3,3),且圆心C在直线l:x+y+5=0上.
(1)求线段AB的垂直平分线方程;
(2)求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心在直线l:x+2y-3=0上.
(1)求圆C的标准方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x-3y=0上.
(1)求圆C的方程;
(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为
14
,求实数m的值.
(3)已知点M(-4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(4,1)和B(0,-3),且圆心C在直线l:2x-y-5=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若过点P(4,-8)直线l与圆C交点M、N两点,且|MN|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案