精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,对于任意满足,且,数列满足,其前项和为.

1)求数列的通项公式;

2)令,数列的前项和为,求证:对于任意正整数,都有

3)将数列的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:求这个新数列的前项和.

【答案】1;(2)证明见解析;(3.

【解析】

1)由题意可知数列为等差数列,确定该数列的首项和公差,可求出数列的通项公式,可求出,再由可求出数列的通项公式,由等差中项法可知数列为等差数列,从而可得出数列为等比数列,且设该等比数列的公比为,结合题中条件求出的值,即可求出数列的通项公式;

2)利用错位相减法求出数列的前项和,即可证明出

3)求出数列的前项和,对进行分类讨论,利用等差数列和等比数列的求和公式可得出.

1,所以,数列是以为首项,以为公差的等差数列,.

时,.

也适合上式,所以,.

,即

所以,数列为等差数列,设其公差为,则

,所以,数列是正项等比数列,设其公比为,则.

由题意可得,解得

因此,

2

,①

,②

②得

化简得

3)数列的前项和为

数列的前项和为

①当时,

②当时,

特别地,当时,也适合上式;

③当时,.

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在区间内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项大于0的等差数列的公差,且

1)求数列的通项公式;

2)若数列满足:,其中

①求数列的通项

②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)射线与曲线分别交于点(且点均异于原点),当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个函数:①;②;③;④,从其中任选个,则事件:“所选个函数图象有且仅有个公共点”的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某传动装置由两个陀螺组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为);

1)求陀螺的体积;

2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求之间的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若是与无关的常数,)则称数列叫做弱等差数列已知数列满足:,对于恒成立,(其中都是常数)

1)求证:数列弱等差数列,并求出数列的通项公式

2)当时,若数列是单调递增数列,求的取值范围

3)若,且,数列满足:,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点),都在函数)的图像上;

1)若数列是等差数列,求证:数列是等比数列;

2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;

3)设),过点的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区的微信健步走活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:

i)老年人的人数多于中年人的人数;

ii)中年人的人数多于青年人的人数;

iii)青年人的人数的两倍多于老年人的人数.

①若青年人的人数为4,则中年人的人数的最大值为___________.

②抽取的总人数的最小值为__________

查看答案和解析>>

同步练习册答案