【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有99的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合计 |
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:P
【答案】(1)见解析;(2)
【解析】
(1)建立2乘2列联表,利用公式求解,根据计算结果得出结论;
(2)列举出基本事件后利用古典概型的概率公式求解.
解:
(1)2乘2列联表
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
支持 | 32 | ||
不支持 | 18 | ||
合 计 | 10 | 40 | 50 |
<
所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异
(2)年龄在中支持“生育二胎”的4人分别为,不支持“生育二胎”的人记为,则从年龄在的被调查人中随机选取两人所有可能的结果有:,。记“恰好这两人都支持“生育二胎””为事件A,则事件A所有可能的结果有:,所以。所以对年龄在的的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是.
科目:高中数学 来源: 题型:
【题目】如图,半径为2的切直线MN于点P,射线PK从PN出发绕点P逆时针方向旋转到PM,旋转过程中,PK交于点Q,设为x,弓形PmQ的面积为,那么的图象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知数列,首项,设该数列的前项的和为,且
(1)求数列的通项公式;
(2)若数列满足,求数列的通项公式;
(3)在第(2)小题的条件下,令,是数列的前项和,若对,恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程,其中,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com