精英家教网 > 高中数学 > 题目详情
(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是(  )
分析:由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.
解答:解:由圆的方程(x-1)2+(y-1)2=1,得到圆心坐标为(1,1),半径r=1,
∵直线(m+1)x+(n+1)y-2=0与圆相切,
∴圆心到直线的距离d=
|m+n|
(m+1)2+(n+1)2
=1,
整理得:m+n+1=mn≤(
m+n
2
)
2

设m+n=x,则有x+1≤
x2
4
,即x2-4x-4≥0,
∵x2-4x-4=0的解为:x1=2+2
2
,x2=2-2
2

∴不等式变形得:(x-2-2
2
)(x-2+2
2
)≥0,
解得:x≥2+2
2
或x≤2-2
2

则m+n的取值范围为(-∞,2-2
2
]∪[2+2
2
,+∞).
故选D
点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)设x∈R,则“x>
1
2
”是“2x2+x-1>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为-
1
2
,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>
3

查看答案和解析>>

同步练习册答案