(09年临沂一模理)(14分)
设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数 a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由。
解析:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x
即 ┉┉┉┉┉┉┉┉1分
记,则f(x)≥h(x)在(1,+∞)上恒成立等价于.
求得 ┉┉┉┉┉┉┉┉2分
当时;;当时, ┉┉┉┉┉┉┉┉3分
故在x=e处取得极小值,也是最小值,
即,故. ┉┉┉┉┉┉┉┉4分
(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,则 ┉┉┉┉┉┉┉┉6分
当时,,当时,
g(x)在[1,2]上是单调递减函数,在上是单调递增函数。
故 ┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范围是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(3)存在m=,使得函数f(x)和函数h(x)在公共定义域上具有相同的单调性
,函数f(x)的定义域为(0,+∞)。┉┉┉┉┉┉10分
若,则,函数f(x)在(0,+∞)上单调递增,不合题意;┉┉┉11分
若,由可得2x2-m>0,解得x>或x<-(舍去)
故时,函数的单调递增区间为(,+∞)
单调递减区间为(0, ) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的单调递减区间是(0,),单调递增区间是(,+∞)
故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
即当m=时,函数f(x)和函数h(x)在其公共定义域上具有相同的单调性。┉14分
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
已知点M在椭圆(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F。
(1)若圆M与y轴相交于A、B两点,且△ABM是边长为2的正三角形,求椭圆的方程;
(2)若点F(1,0),设过点F的直线l交椭圆于C、D两点,若直线l绕点F任意转动时恒有|OC|2+|OD|2<|CD|2,求a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
如图,在直棱柱ABC-A1B1C1中,AC=BC=AA1,∠ACB=90º,G为BB1的中点。
(1)求证:平面A1CG⊥平面A1GC1;
(2)求平面ABC与平面A1GC所成锐二面角的平面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
甲、乙两人进行射击训练,命中率分别为与P,且乙射击2次均未命中的概率为,
(I)求乙射击的命中率;
(II)若甲射击2次,乙射击1次,两人共命中的次数记为ξ,求ξ的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
已知向量m=(,1),n=(,)。
(I) 若m•n=1,求的值;
(II) 记f(x)=m•n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足
(2a-c)cosB=bcosC,求函数f(A)的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com