精英家教网 > 高中数学 > 题目详情
已知函数(x∈R).
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线x=1对称,证明当x>1时,
(1) f(x)在(-∞,1)上是增函数,在(1,+∞)上是减函数.故函数f(x)在x=1处取得极大值f(1),且f(1)=  (2)见解析
本试题主要是考查了导数在研究函数中的运用。
(1)根据已知函数求解导数,结合导数的 符号与单调性的关系得到单调区间。
(2)构造函数由题意可知g(x)=f(2-x),
得g(x)=(2-x)ex-2.
令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2.
于是F′(x)=(x-1)(e2x-2-1)e-x.
当x>1时,2x-2>0,从而e2x-2-1>0.
又e-x>0,
结合单调性得到结论。
解:(1)f′(x)=(1-x)e-x.令f′(x)=0,
解得x=1.
当x变化时,f′(x),f(x)的变化情况如下表:

所以f(x)在(-∞,1)上是增函数,在(1,+∞)上是减函数.
故函数f(x)在x=1处取得极大值f(1),且f(1)=.
(2)证明:由题意可知g(x)=f(2-x),
得g(x)=(2-x)ex-2.
令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2.
于是F′(x)=(x-1)(e2x-2-1)e-x.
当x>1时,2x-2>0,从而e2x-2-1>0.
又e-x>0,
所以F′(x)>0,从而函数F(x)在[1,+∞)上是增函数.
又F(1)=e-1-e-1=0,
所以x>1时,有F(x)>F(1)=0,
因此,当x>1时,f(x)>g(x).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ)试判断方程(其中)是否有实数解?并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间与极值点;
(2)若,方程有三个不同的根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.
(1)求m、n的值及函数y=f(x)的单调区间;(6分)
(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.
(Ⅰ)如果函数>0)的值域为6,+∞,求的值;
(Ⅱ)研究函数(常数>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为实数,函数
(1)求的单调区间
(2)求证:当时,有
(3)若在区间恰有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极值
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

同步练习册答案