精英家教网 > 高中数学 > 题目详情
18.过点(-2,4)且在两坐标轴上截距相等的直线有(  )
A.1条B.2条C.3条D.4条

分析 对直线截距分类讨论即可得出.

解答 解:当直线经过原点时,满足条件,其方程为:y=-2x.
当直线不经过原点时,设要求的直线方程为:x+y=a,代入点(-2,4)可得a=2,此时直线方程为x+y=2.
综上可得:满足条件的直线有两条.
故选:B.

点评 本题考查了直线的截距式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知m,n是直线,α,β,γ是平面,给出下列说法
①若α⊥β,α∩β=m,n⊥m,则n⊥α或者n⊥β
②若α∥β,α∩γ=m,β∩γ=n,则m∥n
③若m不垂直于α,则m不可能垂直于α内的无数条直线.
④若α∩β=m,m∥n且n?α,n?β,则n∥β
以上说法正确的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=kx+3与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{5}=1$只有一个公共点,则满足条件的k值有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集为R,集合A={x|x<0或x>2},B={x|1<x<3},求
(1)A∩B;   
(2)A∪B;   
(3)∁RA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)$\root{3}{(-2)^{3}}$-($\frac{1}{3}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4;          
(2)lg25+lg50•lg2+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数$y=sin(\frac{2π}{3}x+\frac{π}{4})$的最小正周期3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合U={1,2,3,4,5,6},A={2,3,5},B={1,3,6},则∁U(A∪B)=(  )
A.{4}B.ϕC.{1,2,4,5,6}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=ax2-2x+1,若y=f(x)在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上有零点,则实数a的取值范围为(-∞,0].

查看答案和解析>>

同步练习册答案