分析 已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosB的值,即可确定出B的度数,可求sinB,结合正弦定理即可解得b的值.
解答 解:∵ccosB+bcosC=2acosB,
∴利用正弦定理化简得:2sinAcosB=sinBcosC+sinCcosB,
整理得:2sinAcosB=sin(B+C)=sinA,
∵sinA≠0,∴cosB=$\frac{1}{2}$,
则∠B=60°,sinB=$\frac{\sqrt{3}}{2}$,
∵sinA=$\frac{2\sqrt{2}}{3}$,a=2,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{2\sqrt{2}}{3}}$=$\frac{3\sqrt{6}}{4}$.
故答案为:$\frac{3\sqrt{6}}{4}$.
点评 此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.10 | B. | 0.11 | C. | 0.12 | D. | 0.13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x(万件) | 10 | 11 | 13 | 12 | 8 | 6 |
利润y(万元) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com