精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:

1)估计该批次产品长度误差绝对值的数学期望;

2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.

【答案】12

【解析】

1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;

2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.

1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:

0

0.01

0.02

0.03

0.04

频率

0.4

0.3

0.2

0.075

0.025

所以的数学期望的估计为

.

2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.

设生产一件产品为标准长度的概率为

由题意,又,解得

所以符合要求时,生产一件产品为标准长度的概率的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).

文学类专栏

科普类专栏

其他类专栏

文学类图书

100

40

10

科普类图书

30

200

30

其他图书

20

10

60

1)根据统计数据估计文学类图书分类正确的概率;

2)根据统计数据估计图书分类错误的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为直角梯形,分别为线段的中点.

1)证明:平面∥平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是(

A.消耗1升汽油,乙车最多可行驶5千米

B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C.甲车以80千米/小时的速度行驶1小时,消耗8升汽油

D.某城市机动车最高限速80千米/小时.相同条件下,在该市用乙车比用丙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,四边形为正方形,

1)证明

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求数列的通项公式;

(2)设数列的前项和为,且满足,试确定的值,使得数列为等差数列;

(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点的中点,点上的动点,下列说法中:

可能与平面平行;

所成的角的最大值为

一定垂直;

.

其中正确个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)当时,求证:时,

(Ⅱ)当时,计论函数的极值点个数.

查看答案和解析>>

同步练习册答案