分析 (1)根据等差数列的通项公式和题中的关系,建立首项a1的方程,解之得a1=-10,即可得到数列{an}的通项公式;
(2)由(1)和题意求出Sn,利用二次函数的性质即可求出.
解答 解:(1)∵a2,a4,a5成等比数列,
∴(a1+2)(a1+8)=(a1+6)2,
解得,得a1=-10,
∴an=-10+2(n-1)=2n-12;
(2)Sn=$\frac{n(-10+2n-12)}{2}$=n2-11n=(n-$\frac{11}{2}$)2-$\frac{121}{4}$,
当n=5或n=5时,有最小值,最小值为-30
点评 本题考查了等差数列的通项公式、前n项和公式和二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,$\sqrt{5}$) | B. | ($\sqrt{5}$,+∞) | C. | (1,$\sqrt{5}$] | D. | [$\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | 3$\sqrt{2}$+2 | D. | 2$\sqrt{2}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com