精英家教网 > 高中数学 > 题目详情
18.阅读下面材料,尝试类比探究函数y=x2-$\frac{1}{{x}^{2}}$的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.
阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y=$\frac{1}{x}$,我们可以通过表达式来研究它的图象和性质,如:
(1)在函数y=$\frac{1}{x}$中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y=$\frac{1}{x}$中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y=$\frac{1}{x}$中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(-∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函数,可以推测出,对应的图象关于原点对称.
结合以上性质,逐步才想出函数y=$\frac{1}{x}$对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

分析 通过函数的定义域,函数与x的交点情况,y值的变化趋势,函数的奇偶性和函数的单调性,归纳函数的性质即可.

解答 解:(1)在y=x2-$\frac{1}{{x}^{2}}$中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,
(2)令y=0,即x2-$\frac{1}{{x}^{2}}$=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(-1,0),
(3)在y=x2-$\frac{1}{{x}^{2}}$中,当0<x<1时,$\frac{1}{{x}^{2}}$>1>x2,则y<0,当x>1时,$\frac{1}{{x}^{2}}$<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x轴的上方,
(4)在y=x2-$\frac{1}{{x}^{2}}$中,若x∈(0,+∞),则
当x逐渐增大时$\frac{1}{{x}^{2}}$逐渐减小,x2-$\frac{1}{{x}^{2}}$,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,
可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,
(5)由函数y=x2-$\frac{1}{{x}^{2}}$可知f(-x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称

点评 本题考查了类比推理的问题,关键是掌握函数的性质,以及题目所告诉的例子,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知各项均不相等的等差数列{an}的前五项和S5=20,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={0,1,log3(x2+2),x2-3x},若-2∈A,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→$\sqrt{x}$是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1};②若B={1,2},则A∩B={1}或∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$-2$\overrightarrow{b}$等于(  )
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,-3),若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,7)共线,则λ的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若点P(cosθ,sinθ)在直线2x+y=0上,则cos2θ+$\frac{1}{2}$sin2θ=(  )
A.-1B.-$\frac{1}{2}$C.$\frac{7}{5}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设D是线段BC的中点,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,则(  )
A.$\overrightarrow{AD}=2\overrightarrow{AE}$B.$\overrightarrow{AD}=4\overrightarrow{AE}$C.$\overrightarrow{AD}=2\overrightarrow{EA}$D.$\overrightarrow{AD}=4\overrightarrow{EA}$

查看答案和解析>>

同步练习册答案