精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求直线PB与平面BD的夹角.
分析:(1)取PB中点Q,连结MQ、NQ,利用三角形中位线定理和菱形的性质,证出QN
.
MD得到四边形MQND是平行四边形,可得DN∥MQ.利用线面平行判定定理,即可证出DN∥平面PMB;
(2)由菱形ABCD中∠A=60°,得到△ABD是正三角形,从而MB⊥AD.由PD⊥底ABCD得到PD⊥MB,利用线面垂直的判定定理,证出MB⊥平面PAD,结合面面垂直判定定理可得平面PMB⊥平面PAD;
(3)由前面的证明,可得△PBD是以D为直角顶点的等腰直角三角形,从而得到直线PB与平面BD的夹角为45°.
解答:解:(1)取PB中点Q,连结MQ、NQ,
∵M、N分别是棱AD、PC中点,
∴QN∥BC∥MD,且QN=MD,
四边形MQND是平行四边形,可得DN∥MQ.
∵MQ?平面PMB,DN?平面PMB
∴DN∥平面PMB;…(5分)
(2)∵PD⊥底ABCD,MB?平面ABCD,
∴PD⊥MB
又∵底面ABCD为菱形,∠A=60°且M为AD中点,
∴MB⊥AD.
又∵AD、PD是平面PAD内的相交直线,∴MB⊥平面PAD.
∵MB?平面PMB,∴平面PMB⊥平面PAD;…(10分)
(3)连结BD,
∵底面ABCD是边长为a的菱形,∠A=60°
∴△ABD是边长为a的正三角形
∵PD⊥底ABCD,且PD=CD,
∴RT△PBD中,PD=BD=a,可得∠PBD=45°
即直线PB与平面BD的夹角等于45°…(14分)
点评:本题给出特殊的四棱锥,求证线面平行、面面垂直并求两直线所成的角,着重考查了空间平行、垂直位置关系的判断与证明和空间角的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案