精英家教网 > 高中数学 > 题目详情
三棱锥S-ABC中,底面为边长为6的等边三角形,SA=SB=SC,三棱锥的高为
3
,则侧面与底面所成的二面角为(  )
A.45°B.30°C.60°D.65°
如图所示,过点S作SO⊥底面ABC,点O为垂足,
连接OA、OB、OC,则Rt△OAB≌Rt△OBC≌Rt△OCA,∴OA=OB=OC,
∴点O为等边△ABC的中心.
延长AO交BC于点D,连接SD.
则AD⊥BC,再根据三垂线定理可得BC⊥SD.
∴∠ODS为侧面SBC与底面ABC所成的二面角的平面角.
根据重心定理可得:OD=
1
3
AD
=
1
3
×
3
2
×6
=
3

在Rt△SOD中,tan∠ODS=
SO
OD
=
3
3
=1,∴∠ODS=45°.
∴侧面SBC与底面ABC所成的二面角的平面角为45°.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:AC⊥SB;
(2)求直线SB与平面ADS所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

边长为a的菱形ABCD中锐角A=θ,现沿对角线BD折成60°的二面角,翻折后|AC|=
3
2
a,则锐角A是(  )
A.
π
12
B.
π
6
C.
π
3
D.
π
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=
2

(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标系中,A(-2,3),B(3,-2)沿x轴把直角坐标系折成90°的二面角,则此时线段AB的长度为(  )
A.2
5
B.
38
C.5
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
1
2
AB=1,将△ADC沿AC折起,使D到D′.若二面角D′-AC-B为60°,则三棱锥D′-ABC的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设正方体ABC-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是(  )
A.EF平面DPQ
B.二面角P-EF-Q所成角的最大值为
π
4
C.三棱锥P-EFQ的体积与y的变化有关,与x、z的变化无关
D.异面直线EQ和AD1所成角的大小与x、y的变化无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED;②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1的侧棱AA1=a,底面ABCD的边长AB=2a,BC=a,E为C1D1的中点;
(1)求证:DE⊥平面BCE;
(2)求二面角E-BD-C的正切值.

查看答案和解析>>

同步练习册答案