精英家教网 > 高中数学 > 题目详情
从点P1(0,0)作x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q点处的切线与x轴交于点P2.现从P2作x轴的垂线交曲线于点Q2,依次重复上述过程,可得到一系列点:P1,Q1,P2,Q2,…,则
n
i=1
|PiQi|=
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,等差数列与等比数列
分析:设出pk-1的坐标,求出Qk-1,利用导数的几何意义函数在切点处的导数值是曲线的曲线的斜率,利用点斜式求出切线方程,令y=0得到xk与xk+1的关系.求出|PiQi|的表达式,利用等比数列的前n项和公式求出和.
解答: 解:(Ⅰ)设Pk-1(xk-1,0),
由y=ex得Qk-1(xk-1exk-1),
则点Qk-1处切线方程为y-exk-1=exk-1(x-xk-1),
由y=0得xk=xk-1-1(2≤k≤n).
由于x1=0,xk-xk-1=-1,得xk=-(k-1),
则|PiQi|=exi=e-i+1
故Sn=|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|
=1+e-1+e-2+…+e-n+1
=
1-e-n
1-e-1
=
e-e1-n
e-1

故答案为:
e-e1-n
e-1
点评:本题考查导数的几何意义:函数在切点处的导数值是曲线的切线的斜率、考查等比数列的通项和前n项和公式,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的任意函数f(x)=lg(10x+1),x∈R,可以表示成一个奇函数g(x)与偶函数h(x)的和,求g(x)与h(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(1)求椭圆的方程;
(2)设A,B分别为椭圆的左右顶点过点F且斜率为k的直线与椭圆交于C,D两点,若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程组:
4b+6a=36
ab=12

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1、x2是方程lg2x+algx+b=0的两个根,求x1•x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)一个黑色小布袋,袋中有3只黄色、3只红色的乒乓球(除颜色外其体积、质地完全相同),从袋中随机摸出2个球,
(1)求摸出的2个球为红球和摸出的2个至少一球球为黄球的概率分别是多少?
(2)求摸出的2个球的颜色不相同的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x+6,x≥-2
-6-3x,x<-2
,若不等式f(x)≥2x-m恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
π
4
)=2
2
,曲线C2的参数方程为
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)求C1的直角坐标方程,它表示什么曲线?
(Ⅱ)求C2上的点到C1的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,sinA=
3
5
,cosB=
12
13
,AB=8,则△ABC的面积为
 

查看答案和解析>>

同步练习册答案