精英家教网 > 高中数学 > 题目详情
给定椭圆C:
x2
a2
+
y2
b2
=1(>b>0),将圆心在原点O、半径是
a2+b2
的圆称为椭圆C的“准圆”.已知椭圆C的方程为
x2
3
+y2=1.
(Ⅰ)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(Ⅱ)若点A是椭圆C的“准圆”与X轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.
分析:(Ⅰ)由准圆定义求出椭圆C的准圆方程,取x=0得到P点坐标,由题意可知l1,l2的斜率存在,设出过P点的直线方程,和椭圆方程联立后化为关于x的一元二次方程,由判别式等于0求解直线的斜率,则l1,l2的方程可求;
(Ⅱ)由题意可知:B,D点的横坐标相等,纵坐标互为相反数,设出B,D的坐标,代入椭圆方程后得到B点横纵坐标的关系,写出向量
AB
AD
的坐标,代入数量积公式后化为关于B点横坐标的函数关系式,由B点横坐标的范围求解
AB
AD
的取值范围.
解答:解:(Ⅰ)由椭圆C的方程为
x2
3
+y2=1.
得其“准圆”方程为x2+y2=4.
则P点坐标为(0,2),∵直线l过P且与椭圆C只有一个交点,
则直线l的方程可设为y=kx+2,将其代入椭圆方程可得:
x2+3(kx+2)2=3,即(3k2+1)x2+12kx+9=0.
由△=(12k)2-36(3k2+1)=0,解得k=±1,
∴直线l1 的方程为y=x+2,l2 的方程为y=-x+2,
或直线l1 的方程为y=-x+2,l2 的方程为y=x+2;
(Ⅱ)如图,
由题意可设B(m,n),D(m,-n)(-
3
<m<
3
),
则有
m2
3
+n2=1

又点A的坐标为(2,0),故
AB
=(m-2,n),
AD
=(m-2,-n)

AB
AD
=(m-2)2-n2=m2-4m+4-(1-
m2
3
)

=
4
3
m2-4m+3=
4
3
(m-
3
2
)2

-
3
<m<
3

4
3
(m-
3
2
)2∈[0,7+4
3
)

AB
AD
的取值范围是[0,7+4
3
).
点评:本题考查了椭圆的简单几何性质,考查了平面向量的数量积运算,考查了直线和圆锥曲线的关系,方法是联立直线和圆锥曲线方程,利用整理后的一元二次方程的判别式求解.
此题属中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 已知椭圆C的两个焦点分别是F1(-
2
,0)、F2(
2
,0)
,椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点P(0,m)(m<0),使得过点P作直线l与椭圆C只有一个交点,且l截椭圆C的“伴随圆”所得的弦长为2
2
.若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆m的“伴随圆”. 若椭圆C的一个焦点为F2(
2
,0)
,其短轴上的一个端点到F2距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随圆”所得的弦长为2
2
,求m的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,试判断直线l1,l2的斜率之积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2
2
,0
),其短轴上的一个端点到F2距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随圆”所得的弦长为2
2
,求m的值.

查看答案和解析>>

同步练习册答案