精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.
分析:(Ⅰ)先说明G为AB的中点;取AB和PD中点G、H,则GE∥AH,由题意先证明CD⊥平面PAD,再证AH⊥平面PCD,证出GE⊥平面PCD.
(Ⅱ)利用图形中的垂直条件建立坐标系,求出平面ADE的法向量,再用数量积求向量所成角的余弦值,即为所求角的正弦值.
解答:解:(Ⅰ)当G为AB中点时,GE⊥平面PCD,证明如下:
取PD的中点H,连EH,AH,GE.∵EH∥CD,EH=
1
2
CD,AG∥CD,AG=
1
2
CD,
∴AG∥CD,AG=CD,∴四边形AGEH为平行四边形.
∴GE∥AH∵在△PAD中,PA=AD,∴AH⊥PD,
∵PA⊥底面ABCD,∴PA⊥CD,又∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD
∵AH?平面PAD,∴CD⊥AH,且PD∩CD=D,
∴AH⊥平面PCD,又∵GE∥AH,∴GE⊥平面PCD
(Ⅱ)如图,以A为原点,分别以直线AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
∵E为PC的中点,∴E(1,1,1)
AE
=(1,1,1)
AD
=(0,2,0)
AC
=(2,2,0);
设平面AED的一个法向量为
n
=(x,y,z)
AE
n
=0
AD
n
=0
,即
x+y+z=0
2y=0
,令x=1,得
n
=(1,0,-1),
设直线AC与平面AED所成的角为θ,则sinθ=|cos<
n
AC
>|=
1
2

∴设直线AC与平面AED所成的角为30°.
点评:本题考查了线线、线面平行和垂直的定理及定义的运用,用向量法求线面角;考查了推理论证能力、转化能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案