精英家教网 > 高中数学 > 题目详情

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围。

(1)a=1
(2),
(3)

解析试题分析:解:(1)

           4
(2)

             6
(舍去)







0



 


        9
(3)由(2)得
      10



           12

             14
考点:导数的运用
点评:解决的关键是利用导数的符号判定单调性,以及运用极值来求解最值,结合值域的关系来得到参数的范围。属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中,记函数的定义域为D
(1)求函数的定义域D
(2)若函数的最小值为,求的值;
(3)若对于D内的任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的最小值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域;
(2)判定函数的奇偶性,并加以证明;
(3)判定的单调性,并求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设表示P点行程,表PA的长,求关于的函数关系式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,)是上的奇函数.
(Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的单调区间与极值点.

查看答案和解析>>

同步练习册答案