精英家教网 > 高中数学 > 题目详情
6.如果实数x,y满足x2+y2=4,那么$\frac{y-2}{x+3}$的最小值是(  )
A.-$\frac{12}{5}$B.-1C.-$\frac{5}{12}$D.0

分析 令t=$\frac{y-2}{x+3}$,则k是过A(x,y)和B(-3,2)的直线的斜率,利用直线AB和圆有公共点,所以圆心(0,0)到直线距离小于等于半径r=1,可得结论.

解答 解:设t=$\frac{y-2}{x+3}$,则tx-y+3t+2=0,
所以圆心到直线的距离d=$\frac{|3t+2|}{\sqrt{{t}^{2}+1}}$≤2,
所以-$\frac{12}{5}$≤t≤0,
所以$\frac{y-2}{x+3}$的最小值是-$\frac{12}{5}$,
故选:A.

点评 本题考查直线与圆的位置关系,考查学生的计算能力,利用圆心(0,0)到直线距离小于等于半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.f(z)=z+i,且z1=1+5i,z2=-3+3i,则f(z1-z2)的值为(  )
A.-2+3iB.-2-3iC.4-3iD.4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,则$\overrightarrow{AD}$•$\overrightarrow{BD}$=(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{5}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(n)=cos($\frac{nπ}{2}$+$\frac{π}{4}$)(n∈Z),则f(1)+f(2)+…+f(2010)=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.$\frac{y-{y}_{1}}{x-{x}_{1}}$=k为过点P(x1,y1)且斜率为k的直线方程
B.过y轴上一点(0,b)得直线方程可以表示为y=kx+b
C.若直线在x轴、y轴的截距分别为a与b,则该直线方程为$\frac{x}{a}$+$\frac{y}{b}$=1
D.方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示过两点P(x1,y1)、Q(x2,y2)一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中:
①若p∨q为真命题,则p∧q为真命题;
②“x>5”是“x2-4x-5>0”的必要不充分条件;
③命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,x2+x-1≥0都成立;
④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0.
其中命题为假的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
(1)求an和Sn
(2)设bn=log3a1+log3a2+…+log3an,求数列bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)证明:函数f(x)为奇函数;
(2)证明:函数f(x)在(-∞,+∞)上为减函数.
(3)求f(x)在区间[-9,9]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.P为边长为2的正三角形内(不包括边界)一点,P到三角形三边距离分别为a、b、c,则ab+bc+ca取值范围是(  )
A.(0,1]B.(0,2)C.$({0,2\sqrt{3}})$D.(0,4)

查看答案和解析>>

同步练习册答案