精英家教网 > 高中数学 > 题目详情

【题目】随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取8名购物者进行采访,4名男性购物者中有3名倾向于网购,1名倾向于选择实体店,4名女性购物者中有2名倾向于选择网购,2名倾向于选择实体店.

(1)若从8名购物者中随机抽取2名,其中男女各一名,求至少1名倾向于选择实体店的概率:

(2)若从这8名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.

【答案】(1)(2)见解析

【解析】分析:(1)根据独立事件可以求出没有人倾向于选择实体店的概率;利用对立事件的概率,可以求出解

(2)根据离散型随机变量的概率分布,列出分布列,即可求出数学期望。

详解:(1)设随机抽取2名,其中男、女各一名,至少1名倾向于选择实体店为事件A,则表示随机抽取2名,其中男、女各一名,都倾向于选择网购”,

PA=1-P=1-=

2X的所有可能取值为0123,且PX=k=

PX=0=PX=1=

PX=2=PX=3=.

所以X的分布列为

X

0

1

2

3

P

所以EX=0×+l×+2×+3×=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数零点的个数;

(2)若,当=1时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有如下公式:,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.

(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列

满足:1(k=1,2,…,n-1).

对任意i,j,都存在s,t,使得,其中i,j,s,t{1,2,…,n}且两两不相等.

(I)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;

1,1,1,2,2,2; 1,1,1,1,2,2,2,2; 1,1,1,1,1,2,2,2,2

(II)记.若m=3,求S的最小值;

(III)若m=2018,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(1-2x)(x2-2).

(1)求f(x)的单调区间和极值;

(2)若直线y=4x+b是函数y=f(x)图象的一条切线,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a、b∈R,a、b为常数),且y=f(x)在x=1处切线方程为y=x﹣1.
(1)求a,b的值;
(2)设h(x)= , k(x)=2h′(x)x2 , 求证:当x>0时,k(x)<+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中:

①若,满足,则的最大值为4;

②若,则函数的最小值为3;

③若,满足,则的最大值为

④若,满足,则的最小值为2;

⑤函数的最小值为9.

正确的________.(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是(  )

x

6

8

10

12

y

6

m

3

2

A. 变量之间呈现负相关关系

B. 的值等于5

C. 变量之间的相关系数

D. 由表格数据知,该回归直线必过点(9,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,第一象限内有定点和射线,已知的倾斜角分别为 轴上的动点共线.

(1)求点坐标(用表示);

(2)求面积关于的表达式

(3)求面积的最小时直线的方程.

查看答案和解析>>

同步练习册答案