精英家教网 > 高中数学 > 题目详情

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

(Ⅰ)内是增函数,在内是减函数.当时,取得极大值=.
(Ⅱ)见解析;(Ⅲ)见解析.

解析试题分析:(Ⅰ)求出导函数=,然后令=0,解得.画出随着 变化而变化的表格,即可得出的单调区间和极值;(Ⅱ)先求出,然后令,求出,求出当时,即可得证;(Ⅲ)由不可能在同一单调区间内,则根据(Ⅰ)的结论,设,根据(Ⅱ)可知,而,故,即得证.
试题解析:(Ⅰ)∵=,∴=.
=0,解得.



2



0



极大值

内是增函数,在内是减函数.
∴当时,取得极大值=.
(Ⅱ)证明:,
=.
时,<0,>4,从而<0,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论函数的单调性;
(2)若存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)记的导函数,若不等式 在上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立,求m(m∈Z,m1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在区间上是减函数,求的取值范围.

查看答案和解析>>

同步练习册答案