精英家教网 > 高中数学 > 题目详情
11.不等式$\frac{3x-1}{2-x}≤1$的解集是(  )
A.{x|$\frac{3}{4}$≤x≤2}B.{x|$\frac{3}{4}$≤x<2}C.{x|x<2}D.{x|x>2或x≤$\frac{3}{4}$}

分析 通过讨论x-2的符号,求出不等式的解集即可.

解答 解:∵$\frac{3x-1}{2-x}≤1$,
∴$\frac{3x-1}{2-x}$-$\frac{2-x}{2-x}$≤0,
∴$\frac{4x-3}{x-2}$≥0,
故$\left\{\begin{array}{l}{4x-3≥0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{4x-3≤0}\\{x-2<0}\end{array}\right.$,
解得:x>2或x≤$\frac{3}{4}$,
故不等式的解集是:{x|x>2或x≤$\frac{3}{4}$},
故选:D.

点评 本题考查了解分式不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的奇函数,且当x>0时,$f(x)={(\frac{1}{2})^x}+1$
(1)求函数f(x)的解析式
(2)画出函数的图象,根据图象写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合I,M,N的关系如图所示,则I,M,N的关系为(  )
A.(∁IM)?(∁IN)B.M⊆(∁IN)C.(∁IM)⊆(∁IN)D.M?(∁IN)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的侧面AA1B1B是边长为2的正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)求三棱锥A-B1CC1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x>1,则$\frac{1}{x}$<1”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线${x^2}-\frac{y^2}{4}=1$的右焦点作直线l交双曲线于A,B两点,则|AB|的最小值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.直线l:y=kx+1与双曲线C:2x2-y2=1.
(1)若直线与双曲线有且仅有一个公共点,求实数k的取值范围;
(2)若直线分别与双曲线的两支各有一个公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an},a1=1,an+1=an+2n,计算数列{an}的第100项.现已给出该问题算法的流程图(如图1所示)

(1)请在图1中判断框的A、B、C(其中A中用i的关系表示)处填上合适的语句,使之完成该问题的算法功能.
(2)根据流程图1补充完整程序语言(如图2)(即在D、E、F处填写合适的语句).
解:(将答案写在下面相应位置)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,已知圆C1:x2+y2+6x-2y+6=0和圆C2:x2+y2-8x-10y+37=0若直线l过点A(4,0),且被圆C1截得的弦长为2$\sqrt{3}$,
(1)求直线l的方程
(2)求圆C2上的点到直线l的最远距离.

查看答案和解析>>

同步练习册答案