精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则 的取值范围为

【答案】[2,
【解析】解:a,b,c成等比数列,

= =q,q>0,

则b=aq,c=aq2

解得 <q<

= + = +q,

由f(q)= +q在( ,1)递减,在(1, )递增,

可得f(1)取得最小值2,由f( )=f( )=

即有f(q)∈[2, ).

所以答案是:[2, ).

【考点精析】通过灵活运用函数的最值及其几何意义和等比数列的通项公式(及其变式),掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;通项公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在射线y=2x﹣3(x≥0),且与直线y=x+2和y=﹣x+4都相切.
(1)求圆C的方程;
(2)若P(x,y)是圆C上任意一点,求x+2y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为 ,那么3,4,5,a,b这组数据的方差为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】儿童乘坐火车时,若身高不超过1.1m,则不需买票;若身高超过1.1m但不超过1.4m,则需买半票;若身高超过1.4m,则需买全票.试设计一个买票的算法,并写出相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;
(1)当 时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)过点(2,0),离心率为
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ax2+bx+c<0的解集为({﹣∞,﹣1})∪( ,+∞),则不等式cx2﹣bx+a<0的解集为(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

同步练习册答案