精英家教网 > 高中数学 > 题目详情
5.关于函数f(x)=$lg\frac{{{x^2}+1}}{|x|}$(x≠0),有下列命题:
①f(x)的最小值是lg2;
②其图象关于y轴对称;
③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;
④f(x)在区间(-1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.

分析 是结合复合函数单调性的关系进行判断.
②根据基本由函数奇偶性的定义判断函数为偶函数判断;
③利用对勾函数的单调性判断;
④由对勾函数的最值及函数奇偶性的性质进行判断即可.

解答 解:①函数f(x)=lg$\frac{{{x^2}+1}}{|x|}$,(x∈R且x≠0).
∵$\frac{{{x^2}+1}}{|x|}$$≥\frac{2|x|}{|x|}$=2,
∴f(x)=lg$\frac{{{x^2}+1}}{|x|}$≥2,即f(x)的最小值是lg2,故①正确,
②∵f(-x)=$lg\frac{(-x)^{2}+1}{|-x|}=lg\frac{{x}^{2}+1}{|x|}$=f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;
③当x>0时,t(x)=$\frac{{x}^{2}+1}{|x|}=\frac{{x}^{2}+1}{x}=x+\frac{1}{x}$,在(0,1)上单调递减,在(1,+∞)上得到递增,
∴f(x)=lg$\frac{{{x^2}+1}}{|x|}$在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;
④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,
∴在(-1,0)上单调递增,在(-∞,-1)上得到递减,故④正确,
故答案为:①②④

点评 本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,g(x)=ax2-x(a≠0).
(1)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数a的值并求点P的坐标;
(2)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求实数a的取值范围;
(3)在(2)的条件下,过线段MN的中点作x轴的垂线分别与y=f(x)的图象和y=g(x)的图象交于S、T点,以S为切点作y=f(x)的切线l1,以T为切点作y=g(x)的切线l2,是否存在实数a使得l1∥l2,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,平面PAD⊥底面ABCD,PA⊥PD,PA=PD,BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)直线PB与CD所成角的余弦值;
(2)求直线CD和平面PAB所成的角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F是抛物线y2=2x的焦点,A,B是该抛物线上的两点,且|AF|+|BF|=4,则线段AB的中点到抛物线准线的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是$\frac{8π}{3}$.(结果保留π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则Sn-6an的最小值为(  )
A.-36B.-30C.-27D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设φ(x)=sin2[(2n+$\frac{1}{2}$)π-x]+cos2(x-$\frac{3}{2}$π)+cos2(π-x)(n∈Z),求φ($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn,满足2Sn+bn=1
(1)求数列{an}、{bn}的通项公式;
(2)如果cn=anbn,设数列{cn}的前n项和为Tn,求证:Tn<Sn+$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x0-$\sqrt{1-2x}$的定义域是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]C.(-∞,0)∪(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案