精英家教网 > 高中数学 > 题目详情
若2x-3y+z=3,则x2+(y-1)2+z2的最小值为
 
考点:圆的标准方程
专题:不等式的解法及应用,直线与圆
分析:利用题目条件得出柯西不等式的条件:(22+(-3)2+12)(x2+(y-1)2+z2)≥(2x-3(y-1)+z)2,代入求解即可.
解答: 解:∵2x-3y+z=3,
∴2x-3(y-1)+z=6,
∵22+(-3)2+12=14,
根据柯西不等式求解:
∴14×(x2+(y-1)2+z2)=(22+(-3)2+12)(x2+(y-1)2+z2)≥(2x-3(y-1)+z)2=36,
∴x2+(y-1)2+z2
36
14
=
18
7

故答案为:
18
7
点评:本题考查柯西不等式,关键是利用:(22+(-3)2+12)(x2+(y-1)2+z2)≥(2x-3(y-1)+z)2,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(-2,3),点B(3,2),过点P(0,-2)的直线L与线段AB有公共点,若点Q(m,3)在直线L上,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆满足条件:①截y轴所得的弦长为2;②圆心到直线l:x-2y=0的距离为
5
5
;③被x轴分成的两段圆弧,其弧长的比为3:1.
(1)求这个圆的方程
(2)若上述圆的圆心在第一象限,过(-1,3)点的一条光线射到x轴反射后恰好与上述圆相切,求入射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

依次计算a1=2×(1-
1
4
),a2=2×(1-
1
4
)(1-
1
9
),a3=2×(1-
1
4
)(1-
1
9
)(1-
1
16
),a4=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)(1-
1
25
),猜想an=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
(n+1)2
)结果并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=
3
,AC=1,∠C=60°,则△ABC的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y、z为非零实数,代数式
x
|x|
+
y
|y|
+
z
|z|
+
xyz
|xyz|
的值所成的集合是M,则M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

 一几何体如图所示,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,CB=CD=CF.
(Ⅰ)求证:AC⊥平面BCF;
(Ⅱ)若平面AED⊥平面ABCD,证明:平面AED⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}分别是等差数列与等比数列,满足a1=1,公差d>0,且a2=b2,a6=b3,a22=b4
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列{cn}对任意正整数n均有
c1
b1
+
c2
b2
+…
cn
bn
=an+1成立,设{cn}的前n项和为Sn,求证:S2015≥e2015(e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R*且x+2y=2,则
x+1
+
2y+1
的最大值等于
 

查看答案和解析>>

同步练习册答案